Variational Bayesian inference for network autoregression models
نویسندگان
چکیده
We develop a variational Bayesian (VB) approach for estimating large-scale dynamic network models in the autoregression framework. The VB allows automatic identification of structure such model and obtains direct approximation posterior density. Compared to Markov chain Monte Carlo (MCMC)-based sampling approaches, achieves enhanced computational efficiency without sacrificing estimation accuracy. In real data analysis scenario day-ahead natural gas flow prediction German transmission with 51 nodes between October 2013 September 2015, delivers promising forecasting accuracy along clearly detected structures terms dependence.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملIndirect inference for spatio-temporal autoregression models
In this note we introduce a new inferential method for STAR (spatio-temporal autoregression) models. Due to the complexity of such models the maximum likelihood estimation is difficult to undertake when several nearest neighbours are included in the model, see Ali (1979). Moreover, only approximate likelihoods are available in practice because of the observations lying on the edges of the spati...
متن کاملStreaming Variational Inference for Bayesian Nonparametric Mixture Models
In theory, Bayesian nonparametric (BNP) models are well suited to streaming data scenarios due to their ability to adapt model complexity with the observed data. Unfortunately, such benefits have not been fully realized in practice; existing inference algorithms are either not applicable to streaming applications or not extensible to BNP models. For the special case of Dirichlet processes, stre...
متن کاملVariational Bayesian inference and complexity control for stochastic block models
It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work and numerous inference strategies such as variational Ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2022
ISSN: ['0167-9473', '1872-7352']
DOI: https://doi.org/10.1016/j.csda.2021.107406